Hypersurfaces with Constant Scalar Curvature
نویسندگان
چکیده
Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of complete surfaces with constant curvature in R 3.
منابع مشابه
Linear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملSpacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملStable space-like hypersurfaces with constant scalar curvature in generalized Roberston-Walker spacetimes
In this paper we study stable spacelike hyersurfaces with constant scalar curvature in generalized Roberston-Walker spacetime M n+1 = −I ×φ F. M.S.C. 2000: 53B30, 53C42, 53C50.
متن کاملHypersurfaces of Constant Curvature in Space Forms
In this paper we shall discuss hypersurfaces M of space forms of constant curvature; where curvature means one of the symmetric functions of curvature associated to the second fundamental form. The values of the constant will be chosen so that the linearized equation will be an elliptic equation onM . For example, for surfaces in 3 the two possible curvatures are the mean curvature H and the Ga...
متن کاملConstant k-curvature hypersurfaces in Riemannian manifolds
In [8], Rugang Ye proved the existence of a family of constant mean curvature hypersurfaces in an m+ 1-dimensional Riemannian manifold (M, g), which concentrate at a point p0 (which is required to be a nondegenerate critical point of the scalar curvature), moreover he proved that this family constitute a foliation of a neighborhood of p0. In this paper we extend this result to the other curvatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005